
Use of Taylor Series in Machine Learning Algorithms

1. Introduction to Taylor Series

1.1. Introduction

While conducting research for my extended essay in biology, I stumbled upon a model that

predicted cell fate in human diseases using polynomials, derived from the Taylor series.

Intrigued by this application of mathematics in biology, I began to research the Taylor series; the

perfect amalgamation of functions, series and calculus. I then discovered that this theorem is

applied in a multitude of fields such as machine learning, cryptography, and as aforementioned,

biological models. As an enthusiast of these areas of knowledge, my curiosity regarding the

theorem grew.

I quickly learnt that the Taylor series is used to approximate functions that play a key role in the

machine learning procedure. In other words, the use of this series helps machines to become

more accurate in their independent predictions of outcomes. In view of the increasing relevance

of machine learning in the present day, there is an exponential increase in the significance of the

Taylor series as well. This incited me to explore the uses of the Taylor Series in machine learning

algorithms and learn more about how mathematics is revolutionizing the modern world.

1.2. Aim of Investigation

This investigation sets out to mathematically display and determine how the Taylor series is used

in machine learning algorithms with focus on Gradient Descent.
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1.3. Power Series

In mathematics, we commonly work with series involving integers. The Power Series, as shown

below, can be thought of as an infinite series made up of terms involving a variable1. It converges

at x = c and can take any form. This series can be used to represent, as well as define functions.

(1)

1.4. Taylor Series

The Taylor series is a special type of power series solely defined for functions that are infinitely

differentiable on an interval. As shown below, it is a method by which functions are expanded as

an infinite sum of terms derived by the function’s derivative at a particular point, a2. In other

words, assume that we have a function f(x) that is differentiable on a given interval. The Taylor

series generated by f(x) at x = a is given by the formula below. With each term, the

approximation becomes more accurate.

(2)

The most commonly used Taylor series is known as the McLaurin series. As shown below, it

generates f(x) at a = 0.

2 Saeed, Mehreen. “A Gentle Introduction to Taylor Series.” Machine Learning Mastery, 19 Aug. 2021,
machinelearningmastery.com/a-gentle-introduction-to-taylor-series/.

1 “10.1: Power Series and Functions.” Mathematics LibreTexts, 11 July 2016,
math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/10%3A_Power_Series/10.01%3A_Power_Series_an
d_Functions.
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(3)

1.7. Taylor Polynomials

The most important application of Taylor series is in the approximation of functions. Suppose

that the function of interest is f(x) for x near a point a.

Example:

𝑓(𝑥) =  𝑥2 + 7
𝑥−3

𝑎 = 5

𝑓(𝑎) = (5)2+7
5−3 = 16 

Such calculations are manageable. However, the computations of functions such as sin(0.5) are

far more complicated. For these, a new function (F(x)) that is easier to work with, and is a fair

approximation of f(x), is formed using the Taylor series. The result is known as the Taylor

polynomial: an approximation of the function of interest3.

3 “AC Taylor Polynomials and Taylor Series.” Activecalculus.org, activecalculus.org/single/sec-8-5-taylor.html.
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1.8. Error Approximation - Lagrange Error Bound

When approximating functions by means of the Taylor series, it is crucial to gauge the size of the

error we may have introduced. As mentioned in Chapter 1.7, the original function is f(x) and our

approximation is F(x). The error in need of calculation will thus be the difference between the

two: . This difference is denoted by R(x). Since we cannot perfectly deduce R(x),𝑓(𝑥) −  𝐹(𝑥)

the function gets bounded as shown below4.

|𝑅(𝑥)| = |𝑓(𝑥) − 𝐹(𝑥)|≤𝑀 (4)

M in the above function is a small number that is in close range of the real error, .𝑓(𝑥) −  𝐹(𝑥)

However, calculating the error bound in this manner is not precise. Thus, R(x) must be redefined.

As aforementioned, the Taylor approximation becomes more accurate with each term. This

suggests that is more accurate that .𝑃
𝑛+1

(𝑥) 𝑃(𝑥)

(5)

Seeing that , the approximated error of𝑃
𝑛+1

(𝑥) −  𝑃
𝑛
(𝑥) = 𝑓(𝑛+1)(𝑎)

(𝑛+1)!  (𝑥 − 𝑎)𝑛+1
𝑃

𝑛
(𝑥)

cannot be greater than the last term. Using this knowledge, a new definition of error R(x) can be

formulated where z is the x value that yields the greatest derivative between a and x.

(6)

4 “Taylor Series - Error Bounds | Brilliant Math & Science Wiki.” Brilliant.org, brilliant.org/wiki/taylor-series-error-bounds/.
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Therefore, approximating error in Taylor polynomials is a three step process5:

1. Find the derivative of(𝑛 + 1)𝑡ℎ  𝑓(𝑥)

2. Calculate the upper bound of  𝑓(𝑛+1)(𝑧)

3. Deduce 𝑅(𝑥)

Although the Lagrange error bound has a standard calculation procedure, the type of error

approximation conducted depends on the type of equation at hand. Polynomials of different

degrees are approximated in varying manners.

1.9. Types of Approximation

1. Constant Approximation

The first approximated function is one that is constant: a polynomial of degree zero. It will thus

take the form, . If , then . Constant𝐹(𝑥) = 𝐴 𝐹(𝑥) = 𝐴  𝐹(𝑎) = 𝐴 = 𝑓(𝑎) ⇒ 𝐴 = 𝑓(𝑎)

approximation is based on the rule that The below graph depicts the original and 𝑓(𝑥) ≈ 𝑓(𝑎).

approximated function on the same plane.

5 “The Error in the Taylor Polynomial Approximations.” Personal.math.ubc.ca,
personal.math.ubc.ca/~CLP/CLP1/clp_1_dc/ssec_taylor_error.html. Accessed 6 August. 2023.\
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Graph 1.1: Constant Approximation

Here, F(x) horizontally interests f(x). As x moves away from point a, the accuracy of

approximation greatly reduces. To ameliorate this, mathematicians conceptualized linear

approximation.

2. Linear Approximation

Graph 1.2: Linear Approximation
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In linear approximation, F(x) takes the form A + Bx. In addition to an intersection at x = a, f(x)

and F(x) have the same gradient at point a. This further denotes that the functions have the same

derivative at a6.

Function First Order Derivative

𝐹(𝑥) = 𝐴 + 𝐵𝑥 𝐹'(𝑥) = 𝐵

𝐹(𝑎) = 𝐴 + 𝐵𝑎 =  𝑓(𝑎) 𝐹'(𝑎) = 𝐵 = 𝑓'(𝑎)

Using the equations in the table above, it can be deduced that:

𝐹(𝑥) = 𝑓(𝑎) + 𝑓'(𝑎)(𝑥 − 𝑎)

⇒  𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓'(𝑎)(𝑥 − 𝑎)

As shown in the above graph, this F(x) will form a tangent to f(x). Nevertheless, this

approximation can still be improved.

6 Weisstein, Eric W. “Taylor Series.” Mathworld.wolfram.com, mathworld.wolfram.com/TaylorSeries.html.
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3. Quadratic/Polynomial Approximation

Graph 1.3: Polynomial Approximation

In quadratic approximations, F(x) takes the form of A + Bx + Cx2. The condition at play here is

that 𝑓''(𝑎) = 𝐹''(𝑎).

Function First Order Derivative Second Order Derivative

𝐹(𝑥) = 𝐴 + 𝐵𝑥 +  𝐶𝑥2 𝐹'(𝑥) = 𝐵 + 2𝐶𝑥 𝐹''(𝑥) = 2𝐶

𝐹(𝑎) = 𝐴 + 𝐵𝑎 + 𝐶𝑎2 =  𝑓(𝑎) 𝐹'(𝑎) = 𝐵 + 2𝐶𝑎 = 𝑓'(𝑎) 𝐹''(𝑎) = 2𝐶 = 𝑓'(𝑎)

Using the equations in the table above, it can be deduced that:

𝐹(𝑥) = 𝑓(𝑎) + 𝑓'(𝑎)(𝑥 − 𝑎) + 𝑓''(𝑎)(𝑥−𝑎)2

2!

⇒  𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓'(𝑎)(𝑥 − 𝑎) + 𝑓''(𝑎)(𝑥−𝑎)2

2!
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This working helps prove the Taylor series, and increases the accuracy of the previous

approximations. It can thus be gathered that higher order derivatives thus produce more

accurate approximations7.

2. Taylor Series and Machine Learning

2.1. Machine Learning and Gradient Descent Algorithm

Machine learning (ML) is the field of study that enables computers to imitate human learning

patterns by means of models and algorithms, rather than explicit programming. Over the last few

years, the advancement of ML has provided us with tools such as speech recognition and email

spam filtering that we use on a regular basis. This attests to the utmost relevance of this field in

the present day. The algorithms used in ML predict values based on the data they are fed8. As

new data is inputted, they optimize their operations and help computers perceive more

complicated datasets by identifying patterns in past data. Therefore, the information processing

and decision making of machines improve with time and the introduction of various types of

data. A series of algorithms is known as a neural network. Such networks are trained using

optimization algorithms such as Gradient Descent.

Gradient Descent helps machines increase their efficacy by the minimization of prediction error9.

It is commonly used to find the minimum of the loss function (differentiable and convex) by

iterative optimization. The loss function calculates the difference between actual and expected

9 Donges, Niklas. “Gradient Descent: An Introduction to One of Machine Learning’s Most Popular Algorithms.” Built In, 23 July
2021, builtin.com/data-science/gradient-descent.

8 “Machine Learning Algorithm - an Overview | ScienceDirect Topics.” Www.sciencedirect.com,
www.sciencedirect.com/topics/engineering/machine-learning-algorithm.

7 Banerjee, Amarabha. “Iterative Machine Learning: A Step towards Model Accuracy.” Packt Hub, 1 Dec. 2017,
hub.packtpub.com/iterative-machine-learning-step-towards-model-accuracy/.
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values (prediction error) at a quantifiable position. Thus, it is a parameter that determines how

well a ML model is performing. The Gradient Descent follows these steps to minimize the loss

function10:

1. Choose initial parameter ( θ = [w,b] )

2. Calculate gradient at the chosen starting point

3. Make incremental step downwards (along negative gradient)

- The step size taken is known as the learning rate (η)

- θ
𝑛𝑒𝑤

=  θ + η(△θ) 

4. Iterate until arrival at the function’s minima

10 “Gradient Descent in Machine Learning - Javatpoint.” Www.javatpoint.com,
www.javatpoint.com/gradient-descent-in-machine-learning.

Page 10 of 16



About Learning Rate11

12

Nevertheless, the question still remains of how the Taylor Series plays a role in the

Gradient Descent algorithm to assist in the minimization of error by machines.

2.2. Application of Taylor Series in Gradient Descent

In the Gradient Descent Optimization Algorithm, the Taylor Series is used to approximate a

function as a distance from a point , by differentiating the function at . The Taylor Series△𝑥 𝑥 𝑥

can hence be rewritten as shown below.

(7)

12 “Gradient Descent in Machine Learning - Javatpoint.” Www.javatpoint.com,
www.javatpoint.com/gradient-descent-in-machine-learning.

11 “What Is Learning Rate in Machine Learning.” Deepchecks, deepchecks.com/glossary/learning-rate-in-machine-learning/.
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The function of interest is the loss function. Therefore, the above Taylor Series must

be written in terms of W.

Taylor Series for loss function

𝐿(𝑤 + △𝑤) = 𝐿(𝑤) +  𝐿'(𝑤)△𝑤 +  1
2! 𝐿''(𝑤)△𝑤2 + 1

3! 𝐿'''(𝑤)△𝑤3 +  .  .  . (8)

Updated loss function

(θ + η△θ) ≈ 𝐿(θ) + η△θ𝑇
▽

θ
𝐿(θ) 

(9)

Since our aim is to minimize loss, we need the updated loss ( ) to be less than the𝐿(θ + η△θ)

initial loss ( . In other words, the below value must be negative.𝐿(θ))

.η△θ𝑇
▽

θ
𝐿(θ) <  0

Now, let be the angle between and .β △θ ▽
θ

Considering the cos of an angle between two vectors is product product of magnitudes:÷

𝑐𝑜𝑠β =
△θ𝑇
▽

θ

 △θ| | ▽θ| |
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Since cos lies between -1 and +1:

− 1 ≤ 𝑐𝑜𝑠β =
△θ𝑇
▽

θ

 △θ| | ▽θ| | ≤  + 1

Multiplication by denominator ( throughout:𝑘 =  △θ| | ▽θ| |)

− 𝑘 ≤  △θ𝑇
▽

θ
≤  + 𝑘

The lowest value of is -k.△θ𝑇
▽

θ

Thus, and . 𝑐𝑜𝑠β =  − 1  β =  180°

Since the vectors have opposite directions, we can conclude that:

△θ =   − ▽
θ
 𝐿(θ)

Substitution of this into a general Learning Algorithm (set of instructions given to machine)

updates the involved parameters. Like the Taylor Series, each iteration produces a more desirable

output. In this case, reiteration minimizes the loss function, thus reducing prediction error. This is

repeated until loss equals zero and the global minima is located. It can therefore be stated that

the more the iterations, the lesser the prediction error made by the machine, increasing its

efficiency.
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3. Evaluation and Conclusion

3.1. Evaluation

Strengths:

1. The investigation entailed an exhaustive explanation of the Taylor Series, Machine Learning

and their relevance in mathematics, as well as the current world.

2. Numerous methods of approximation were explained.

3. All calculations made in the investigation were mathematically reasoned.

4. Graphical representations were used to supplement mathematical explanations.

5. Implementation of multiple mathematical concepts (functions, calculus, vectors,

trigonometry, sequences and series),

Weaknesses:

1. There are various other applications of the Taylor Series in ML (i.e. nonlinear parametric

regression) that this paper does not discuss.

2. The calculations were only done mathematically. More complex computations would require

the use of a program, which this paper lacks.

3. Sample calculations of Gradient Descent would involve programs. They were not included to

maintain the length of the paper.

3.2. Conclusion

This investigation explored the use of Taylor Series in machine learning; specifically in the

Gradient Descent Optimization Algorithm. The mathematical concepts of functions and calculus

were greatly useful in our discussion of the Taylor Series. Upon the introduction of Gradient
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Descent, vectors and trigonometry also played a vital role in the empirical analysis. In company

with our graphical means of explanation, the implementation of these concepts deem this

investigation reliable.

We can also conclude that mathematical reiterations yield values of increasing precision. In

terms of the Taylor Series, a polynomial approximation of the highest degree possible would

produce the most accurate value of F(x).

In terms of its application in ML, the more times the process of Gradient Descent is

repeated, the better the minimisation of the loss function. It is intriguing to see that the

utilization of mathematics in such fields of inquiry produce marvels such as self-driving cars and

speech recognition.

All in all, it can be concluded that this investigation was successful in its aim to

mathematically display and determine how the Taylor series is used in machine learning

and the Gradient Descent Optimization Algorithm.

Page 15 of 16



4. Bibliography

1. Khan, Shahbaz. “Mathematical Intuition behind Gradient Descent.” Medium, 6 May 2021,

towardsdatascience.com/mathematical-intuition-behind-gradient-descent-f1b959a59e6d#b4

5d. Accessed 19 May 2022.

2. “Second Approximation — the Quadratic Approximation.” Personal.math.ubc.ca,

personal.math.ubc.ca/~CLP/CLP1/clp_1_dc/ssec_second_approx.html. Accessed 3 May

2022.

3. Weisstein, Eric W. “Taylor Series.” Mathworld.wolfram.com,

mathworld.wolfram.com/TaylorSeries.html. Accessed 4 May 2022.

4. Hassoun, Mohamad. ECE 3040 Lecture 8: Taylor Series Approximations I. Accessed 1 May

2022.

5. “Multivariable Calculus - Second-Order Taylor Series Terms in Gradient Descent.”

Mathematics Stack Exchange,

math.stackexchange.com/questions/2957673/second-order-taylor-series-terms-in-gradient-d

escent. Accessed 19 May 2022.

6. “Taylor Series - Math Images.” Mathimages.swarthmore.edu,

mathimages.swarthmore.edu/index.php/Taylor_Series. Accessed 4 May 2022.

7. x-engineer.org. Taylor Series Approximation – X-Engineer.org.

x-engineer.org/taylor-series-approximation/. Accessed 2 May 2022.

8. Kwiatkowski, Robert. “Gradient Descent Algorithm — a Deep Dive.” Medium, 24 May

2021,

towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21#:~:text=Gra

dient%20descent%20(GD)%20is%20an. Accessed 5 May, 2022.

9. Saeed, Mehreen. “A Gentle Introduction to Taylor Series.” Machine Learning Mastery, 19

Aug. 2021, machinelearningmastery.com/a-gentle-introduction-to-taylor-series/. Accessed 5

May 2022.

Page 16 of 16


